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Sediment erosion by Görtler vortices:
the scour-hole problem
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Experimental results on sediment erosion (scour) by a plane turbulent wall jet, issuing
from a sluice gate, are presented which show clearly – it seems for the first time – that
the turbulent wall layer is destabilized by the concave curvature of the water/sediment
interface. The streamwise Görtler vortices which emerge create sediment streaks or
longitudinal sediment ridges. The analysis of the results in terms of Görtler instability
of the wall layer indicates that the strength of these curvature-excited streamwise
vortices is such that the sediment transport is primarily due to turbulence created
by these vortices. Their contribution to the wall shear stress is taken to be of the
same form as the normal turbulent wall shear stress. For this reason, the model
developed by Hogg et al. (J. Fluid Mech. Vol. 338, 1997, p. 317) remains valid;
only the numerical coefficients are affected. The logarithmic dependency of the time
evolution of the scour-hole depth predicted by this model is shown to be in good
agreement with experiments. New scaling laws for the quasi-steady state depth and the
associated time, inspired by the Hogg et al. (1997) model are proposed. Furthermore,
it is emphasized that at least two scouring regimes must be distinguished: a short-time
regime after which a quasi-steady state is reached, followed by a long-time regime,
leading to an asymptotic state of virtually no sediment transport.

1. Introduction
Local scour downstream of hydraulic structures by a jet issuing from a sluice gate

has received considerable attention because scour can endanger the foundations of the
structure (see Graf & Altinakar 1998). The first systematic study of this problem dates
back to Eggenberger & Mueller (1944) who proposed a correlation for the asymptotic
scour-hole depth in terms of the hydraulic parameters. A number of other studies
followed. Rajaratnam (1981) investigated the scour hole shape in some detail and
showed that the depth of the scour scales with the jet nozzle size and the densimetric
particle Froude number, Frd = U0/

√
g(�ρ/ρ)d50 (symbols are defined later). Most

of the experiments considered submerged plane water jets impinging on, or flowing
parallel to, a mobile sediment bed. Round jets as well as air jets (Rajaratnam & Berry
1977) and pulsating jets (Kobus, Leister & Westrich 1979) and different entrance
length of the jets or different water depths (Chatterjee, Ghosh & Chatterjee 1994)
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were also investigated. A partial summary of the existing experimental data is given
by Karim & Ali (2000).

A much debated question is the time it takes for a scour hole to form. It is observed
that initially the deepening rate is large (short-time regime) and a quasi-steady state
is reached in a few hundred seconds (depending on the jet size). Then, deepening
continues for days at a very slow rate (Kurniawan, Altinakar & Graf 2001) until the
asymptotic depth is reached. During the first short-time regime of scouring, the scour
hole reaches about half its asymptotic depth.

A remarkable theoretical model of the progressive erosion of a loose sediment bed
by a two-dimensional wall jet has been developed by Hogg, Huppert & Dade (1997,
hereinafter referred to as HHD). These authors used a mass conservation equation
which includes the variation of the erosive force with flow parameters and the effect
of the changing bed characteristics on the effective sediment transport in the scour
hole. Its calculated shape was shown to be in reasonably good agreement with the
experiments. The time variations of the scour-hole depth are also given by this model,
but no direct comparison with the experiments was made.

None of the publications mention the possibility of a curvature-dependent instability
of the boundary layer. The scour hole which is formed by the turbulent wall jet has a
concave shape, and Görtler instability in the wall region of the jet is likely to occur.
Such an instability can drastically change the turbulence structure and substantially
alter the sediment transport rate. It can even be conjectured that this instability and
the ensuing strong streamwise vortices are at the origin of the erosion in the long-time
regime because these vortices, besides giving rise to strong sediment movement, also
cause suspended load formation which is carried out of the hole.

In this paper, it is shown (§ 3) that the pattern of bed-load transport is indicative
of the existence of streamwise vortices. According to the Görtler instability criteria
of a turbulent boundary layer on a concave wall given by Tani (1962) and the
turbulent wall jet studied by Kobayashi & Fujisawa (1983), these vortices originate
from centrifugal instability. The contribution of these vortices to the wall shear stress
or more precisely to the effective shear stress (see § 3.3) is evaluated. The time evolution
of the scour-hole depth is then analysed (§ 4) in the context of the HHD model also
giving scaling laws for the quasi-steady state (called steady state by HHD). Further
discussion and conclusions are presented in § 5.

2. Experimental installation and conditions
The hydraulic flume used is shown schematically in figure 1(a). It consists of a 14 m

long horizontal channel, 80 cm deep and 50 cm wide. At the upstream and downstream
ends of this channel the bottom was raised by inserting rigid panels about 5m in length
in order to create a 35 cm deep and 3.80 m long cavity in the middle of channel. The
latter was filled with uniformly graded sand of mean grain diameter d50 = 2 mm. The
upper surface of this mobile sand bed was initially flush with the upstream panel. A
sluice gate was installed either at the beginning of the sand bed or at a short distance,
Lf , upstream. In most of the experiments reported here, the sluice gate was located
10 cm upstream of the start of the sediment bed. The gate opening was b0 = 2.5 cm
to 8 cm, but most of the experiments were conducted with b0 = 5 cm (see table 1).
The downstream water depth was kept constant during the experiments at h2 ≈ 22 cm
and the upstream water depth, h1, was adjusted so as to give the desired initial (jet)
velocity, U0 =

√
2g�h, where �h= h1 − h2. The water depths were monitored with

ultrasonic probes connected to a PC. The velocity U0 could be varied up to 1.30 m s− 1.
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Figure 1. (a) Schematic representation of the experimental installation. (b) Definition of
the scour hole dimensions. —, scour-hole form (hm(ts) =hs); - - -, asymptotic state of depth,

ha = lim(hm)
t−→ ∞ and length La = lim(xb)

t−→ ∞.

For the grain size of the present experiments, the critical Shields parameter (see Graf
1971) for incipient motion over an almost flat bed is τ ∗

crit = τb/(ρs − ρ) gd50 = 0.035,
where τb is the bed shear stress. The velocity for incipient motion was measured to
be U0 crit = 41 cm s−1, which fits well with the Hjulstrom diagram (see Graf 1971). This
gives a friction coefficient of cf = τb/(ρU 2

0 /2) = 0.014, a value representative of fully
rough conditions (see Schlichting 1968; Grass 1971).

Commencing the experiments, the mobile bed was covered with a thin plate about
1 m long and the water levels were adjusted to the desired values. At time t = 0, this
plate was suddenly withdrawn (pulled upstream along the upstream rigid boundary).
This had no effect on the start of the erosion; the critical velocity, for instance, was
the same with or without the plate. After withdrawal of the plate, scouring progressed
rapidly and the scour hole reached in time t = ts , a quasi-steady-state depth, hs = hm

(ts) and, equivalently, a length, Ls = xb(ts). In the experiments, ts is of the order of
a hundred seconds. The characteristic dimensions of the scour hole are shown in
figure 1(b).

The scour-hole shape as a function of time was determined from side-view video
images taken with a digital video camera. The sediment movement in the scour hole
and its variation across the width of the channel was observed with a second video
camera positioned near the gate and looking downstream (at an angle to the flow
direction). Dye injection indicated that the jet remained attached to the sediment
surface. When approaching the quasi-steady-state scour hole conditions, a very small
(thin) separation bubble exists on the downstream-facing sediment slope and near
to the beginning of the mobile bed, but this does not prevent centrifugal instability
occurring.
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n, number R, ts ,
b0 Lf �h U0 of streaks λ= B/n α = 2π/λ θ radius quasi-steady

Test (m) × 10−2 (m) × 10−2 (m) × 10−2 [m s−1] observed (m) (m−1) (m) × 10−3 αθ (m) GT state (s)

B 5.00 0 3.65 0.846 NA NA NA NA NA 0.195 NA NA
C 5.00 10 3.62 0.843 NA NA NA NA NA 0.207 NA NA

2305 5.00 10 7.50 1.213 ∼ 7 0.071 87.92 2.41 0.212 0.235 3.136 170

2805 5.00 10 1.96 0.620 ∼ 6 0.083 75.36 1.46 0.110 0.165 2.911 240

2905 5.00 10 3.90 0.874 ∼ 7 0.071 87.92 1.89 0.166 0.209 2.944 240

3005a 8.00 10 3.94 0.879 ∼ 5 0.1 62.800 2.41 0.151 0.254 3.020 600

3005b 2.50 10 5.44 1.032 ∼ 8 0.063 100.48 1.34 0.135 0.118 3.309 180

Table 1. Summary of the experimental conditions and the calculated Görtler numbers. The momentum thickness, θ , is evaluated at x = 1.7xm (see
figure 3a) using (2), and cf = 0.014. The wavenumber, α, is determined from the maximum number of observed sediment streaks. NA stands for
not available.
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–z

x

Figure 2. Streamwise oblique view of the sediment surface showing 8 longitudinal sediment
streaks or ridges on the upstream-facing scour-hole slope.

3. Observation of erosion by curvature-driven streamwise vortices
3.1. Qualitative observations

A typical and good-quality instantaneous image of loose sediment streaks, indicative
of sediment lift-up by the longitudinal vortices, is shown in figure 2. These streaks
appear and disappear in a random fashion and their number varies somewhat in
time. In this image, about 8 sediment streaks or ridges can be identified. The origin of
these streaks and consequently the vortices can only be attributed to curvature-driven
instability (known as Görtler vortices). Corner vortices would be much weaker, more
permanent and would be present from the beginning of the sediment layer. When a
vertical barrier was introduced parallel to the flow at different spanwise locations, the
streak pattern was not altered.

From such images, the scour-hole depth as a function of time, hm(t), the radius of
curvature, R, and the spacing of the sediment streaks, λ, were determined. The number
of streaks, n, (for each instance of time) allowed the calculation of the wavelength, λ,
and the wavenumber, α, or:

λ = B/n, α = 2π/λ, (1)

where B = 0.5 m is the width of the flume.
A side view of the erosion process with the corresponding streamwise oblique view

of the scour hole in experiment (Test 2905, see table 1) is shown in figures 3(a) and
3(b). While in the picture shown (taken at t =24.6 s from the start) 6 streaks are
evident, pictures taking at other instants of time, indicated that the number of streaks
varied between 5 and 9 and the counting of the streaks, as given in table 1, was
somewhat subjective. The number given in this table for each experiment is a mean
value of several pictures.
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Figure 3. (a) Side view of sediment/water interface for Test 2905 (U0 = 0.874m s−1 at time
t = 24.6 s). The sediment cloud formed by the Görtler vortices is indicated by the arrow;
(b) corresponding streamwise view direction showing the longitudinal sediment streaks formed
by Görtler vortices.

3.2. Analysis of the observations

In order to demonstrate that the longitudinal vortices are of the Görtler type, it is
necessary to calculate a Görtler number. For a laminar boundary layer this number
is usually defined by G =Reθ (θ/R)1/2, where θ is a viscous length scale, often taken
as equal to (νx/U )1/2 or equal to the momentum thickness, R is the radius of
curvature and Reθ =Uθ/ν the Reynolds number based on this length scale and
the free-stream velocity (Schlichting 1968). Görtler (1941) considered the flow to be
parallel, which allowed a normal mode analysis. Hall (1983) pointed out that, strictly
speaking, a normal mode solution is not possible and that it is necessary to treat the
full non-parallel problem which depends on initial conditions. Since then, a number
of studies have dealt with the non-parallel instability problem (see for instance Hall
1990; Luchini & Bottaro 1998; Bottaro & Luchini 1999). Nevertheless, locally parallel
theories, reviewed by Floryan (1991) and Saric (1994), continue to be used because
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these are more convenient to deal with. Saric (1994) points out that the difference in
growth rate of the perturbations obtained by a normal mode analysis and marching
solutions is modest except near the leading edge. This conclusion is in agreement with
the theoretical results of Bottaro & Luchini (1999).

The flow in the scour hole we are dealing with here is turbulent and of the wall-jet
type. Görtler instability of a laminar wall jet has been considered theoretically by
Floryan (1989), and experimentally by Matsson (1995). Matsson compared his results
with the solutions of Floryan (1989). These experiments show that, sufficiently far
downstream, the vortex amplitude tends to be practically independent of the initial
conditions. The instability conditions of a turbulent wall jet on a concave surface were
determined theoretically by Fujusawa & Shirai (1986) and investigated experimentally
by Kobayashi & Fujisawa (1983). In these studies, the wall jet is fully developed before
moving onto the concave boundary and the stability criterion introduced is b/R ≈ 0.2,
where b is the half-thickness of the wall jet. In the present geometry, the wall jet is
not fully developed (the potential core region extends well into the scour-hole region)
so that the half-thickness, b, is not well defined. We, therefore, prefer to work with
wall conditions using the momentum thickness, θ as the characteristic scale, and,
hence, boundary-layer instability. The instability criterion b/R > 0.2 is, however, well
satisfied in the present experiments. The momentum thickness can be determined
from the relation, cf

∼= 2dθ/dx (Schlichting 1968) giving

θ ≈ 1
2
cf x + θ0, (2)

where θ0 is the momentum thickness at the gate outlet, x = 0. Its value is an order
of magnitude smaller than the other term and is, therefore, neglected. In his analysis
of experiments with a turbulent boundary layer on a concave wall, Tani (1962)
defined the Görtler number in terms of eddy viscosity, νT and θ , and argued that by
replacing the kinematic viscosity by the eddy viscosity, the laminar-boundary-layer
Görtler-instability diagram can be used to determine the instability characteristics of
a turbulent boundary layer. The eddy viscosity is νT =0.018 Um δ∗, independent of
roughness (Clauser 1956); Um is the maximum velocity of the wall jet. The relation
between displacement and momentum thickness depends on roughness and for fully
rough conditions δ∗ ≈ 1.8θ (Antonia & Luxton 1971). Subsequently, the turbulent
Görtler number is given by

GT =
Umθ

vT

√
θ

R
≈ 31

√
θ

R
. (3)

Table 1 summarizes the experimental conditions and the values of the Görtler number.
The wavenumbers, α, are the values determined from the sediment streaks. The Görtler
numbers are well above the critical value, below which Görtler vortices do not exist.
This is clearly seen in figure 4 where the experimental values are presented in the
Görtler number–wavenumber diagram of Tani (1962). The curves of the constant non-
dimensional amplification rate correspond to σθReθ ≈ 31σθ . Note that this instability
diagram is very similar to that obtained by local normal mode analysis of a laminar
boundary layer (see figure 3 of Saric 1994) but with the turbulent Görtler number
replacing the one for a laminar boundary layer. As mentioned before, a normal mode
analysis is, strictly speaking, not correct. It gives, nevertheless, a good indication of the
spatial amplification rate and the wavelength (Saric 1994; Bottaro & Lichini 1999). It
is seen from figure 4 that the experimentally determined (determined from the number
of observed sediment ridges) non-dimensional wavenumber, αθ , is greater by about a
factor of two than the expected most-amplified theoretical value. In our experiment,
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Figure 4. Non-dimensional wavenumber, αθ , versus the Görtler parameter (Tani 1962),
GT = 31(θ/R)1/2. The present data are in the shaded region. The curves of constant
amplification rate, σ , are from Tani (1962).

the Görtler vortices are not steady; these come and go in a random manner. The
images shown (figures 2 and 3) are instantaneous images. Because of this randomness,
we think that only the larger stronger vortices, which can carry a sediment load, survive
long enough to carry sediment up the bed slope. There is, therefore, a tendency for the
sediment streak spacing to give an upper limit of the actual wavelength. Nevertheless,
the observed wavelength corresponds to a non-dimensional wavenumber of about 0.2,
a value often observed in experiments with equivalent Görtler numbers of a laminar
boundary layer (see Saric 1994). In general, Görtler instability is very sensitive to
outside perturbations so that the experimentally observed wavelengths vary easily
by a factor of two or more. For a turbulent boundary layer the value is also about
αθ = 0.2 (see Tani 1962). Floryan (1991) mentions a value of λ/δ ≈ 2 and Meroney
& Bradshaw (1974) give λ/δ ≈ 1.1, where δ is the turbulent boundary-layer thickness.
This gives αθ ≈ 0.15 to 0.3 because δ ≈ 10θ . The experiments with a turbulent wall
jet by Kobayashi & Fujisawa (1983) correspond to turbulent Görtler numbers close
to the present experiments. Their image of the flow taken perpendicular to the mean
velocity (their figure 15) indicates eruptions, which correspond to our streaks, spaced
by λ≈ 25θ; this is close to our observations. The analysis of the observations in
terms of Görtler instability, producing vortices, supports the claim that the observed
sediment streaks are indeed a signature of Görtler vortices.

3.3. Contribution of the Görtler vortices to sediment transport

It will be assumed that the shear stresses due to the boundary-layer turbulence
and due to the Görtler vortices are additive (in the same sense as turbulent kinetic
energies are additive), giving a total effective shear stress, τb = τt + τG. The turbulent
shear stress is τt = ρu2

∗ = ρ(cf /2)U 2
m (see Schlichting 1968) where Um is the velocity

maximum of the wall jet, equal to U0 in the potential core region. The shear stress
due to Görtler vortices will be expressed in a similar way, τG = Kρu2

G = ρ(cf G/2)U 2
m.



Sediment erosion by Görtler vortices 335

The total shear stress can thus be written as

τb = 1
2
cf

(
1 +

cf G

cf

)
ρU 2

m. (4)

The velocity of the Görtler vortices may be evaluated from uG = u1exp(σx). The
spatial amplification rate, σ , is obtained from figure. 4 which shows that, for the
present experiments, 31 σθ ≈ 1, giving σ ≈ 0.16 cm−1. This gives exp(σx) ≈ 25 at
the location x ≈ 1.7xm, in the present experiments on average about 20 cm, and
uG ≈ 0.25Um when the initial perturbation is taken as u1 ≈ 10−2Um . This is less than
the r.m.s. turbulent velocity because only turbulent velocities of scales comparable
with the Görtler vortex spacing λ are likely to be amplified into Görtler vortices.
With these values, we obtain cf G ≈ 0.06 when K = 0.5, implying that uG is taken to
be equivalent to a turbulent velocity. This assumption is justified because, for large
Görtler numbers, the vortices are not steady and behave like turbulence. Kobayashi &
Fujisawa (1983) included them, therefore, in the their turbulence measurements. A
value of K ≈ 0.5 is considered to be representative of the ratio of turbulent shear
stress to turbulent kinetic energy which is usually 0.3, hence K = (τG/ρ)/u2

G ≈ 0.5. The
velocity at which incipient sand grain motion occurs is close to U0 crit =0.41 m s−1

and the friction coefficient is cf = 0.014. Substituting the values for cf and cf G into
(4) gives τb ≈ 0.007(1 + 4)ρU 2

m. This value of the shear stress is close to the value
measured, for similar values of the Görtler numbers, in the wall region of a turbulent
wall jet by Kobayashi & Fujisawa (1983). According to these values, Görtler vortices
represent an important mobilizing force in the scouring process. Note also that τb is
here an effective shear stress, active in sediment transport, and is not the shear stress
at the wall, which is likely to increase only by about 50% owing to the increase of
the mean shear by the Görtler vortices (Floryan 1991). In the downwash regions, the
increase in wall shear stress is likely to be larger. Sediment is easily moved nearly
horizontally at the wall by the increased wall shear stress in the downwash regions
and lifted up by the vortices in the upwash regions to form ridges, thus exposing the
sediment to high mean velocities. Vortices are, therefore, very efficient in transporting
sediment. This is what we refer to as effective wall shear stress.

4. The HHD model
The HHD model does not explicitly take into account the sediment transport by

Görtler vortices. However, if as proposed above, the transport by Görtler vortices is of
the same form as the standard turbulence transport, the HHD model remains valid;
only the effective shear stress is increased by a constant factor. This is a simplification
because the strength of the Görtler vortices increases somewhat with depth as the
radius of curvature decreases. For simplicity, we did not include this refinement in
§ 3.3. The HHD model shows a logarithmic dependency of the scour-hole depth
on time. This logarithmic dependency has been pointed out by Rajaratnam (1981),
however, no comparison with experiments of the depth–time evolution in terms of
the suggested scaling laws has been attempted previously.

HHD obtained the temporal evolution of the scour-hole depth from the integration
of the sediment conservation (Exner) equation (Graf 1971)

(1 − p)
∂h

∂t
+

∂qb

∂x
= 0, (5)
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where p is the porosity of the sediments of the bed, and qb is the volumetric bed
load flux per unit width which was assumed to be given by the Meyer–Peter and
Muller-relation (see Graf 1971)

qb = 8
(
�ρ gd3

50/ρ
)1/2

(τ ∗ − τ ∗
c )3/2. (6)

The critical shear stress parameter τ ∗
c with respect to τ ∗

crit depends on the bed slope
angle, β , and the angle of repose, ϕ, in the form

τ ∗
c = τ ∗

crit

sin(ϕ + β)

sin ϕ
. (7)

The expression derived by HHD (their equation (4.1)) for the bed shear stress,
τb = τ ∗�ρ gd50 in (6) is

τb = C6ρU 2
0 (b0/d50)

2γ (x/b0)
−1+γ G (h, x) , (8)

where G(h, x) is a shape function for describing how the bed shear stress varies when
the boundary is no longer horizontal. It is assumed in the model that G(h, x) = 1
when h = 0 and Gaussian, G(h, x) = exp(− (h/C7 δ)2) when h < 0. Here, δ(x) is the
boundary-layer (wall region) thickness of the wall jet and C7 is another constant.
Furthermore, HHD give for the exponent γ = −0.1. This accounts for the momentum
loss of the wall jet by bottom friction. The dependency of τb on (x/b0) in (8) is for an
established wall jet where the velocity maximum decays as (b0/x)0.47 (see Rajaratnam
1976). In the present case, the wall jet is not established and over part of the erosion
zone, up to about 20 cm, the velocity maximum remains, therefore, close to U0 .

In order to express (5) in non-dimensional form, HHD introduced, respectively, the
following length, time and sediment flux scales:

H = b0Θ
1/(1−γ ), (9)

T =
(1 − p) b2

0 Θ2/(1−γ )

8
(
τ ∗3
crit �ρgd3

50/ρ tan3 ϕ
)1/2

, (10)

and

Q = 8
(
τ ∗3
crit �ρgd3

50/ρ tan3 ϕ
)1/2

, (11)

where

Θ = C6 ρU 2
0 (b0/d50)

2γ tan ϕ

�ρgdτ ∗
crit

(12)

is an erosion parameter. The length scale H emerges as a natural choice from the
critical shear stress condition (equation (4.3) in HHD). The time and flux scales are
more arbitrary, but the relations between the scales are imposed by the transport
equation, (5). The adjustable constant C6 in (8) and (12) should be of the order of
cf /2 (cf = 0.014).

Here, we are not interested in solving the sediment conservation equation or in
re-examining the scour-hole shape, but rather in verifying the scaling laws (9) to (11)
proposed by HHD. In figure 5, the maximum scour-hole depth, hm(t) is plotted as
a function of the logarithm of time. This figure indicates that, for all tests, the time
evolution is similar and, to a good approximation, logarithmic. In figure 6, the non-
dimensionalized scour-hole depth, h∗

m = hm/H , is plotted as a function of the logarithm
of the non-dimensional time, t∗ = t/T . We varied 10−3 � C6 � 10−1 and the best
collapse of the data is obtained for C6 ≈ 10−2. This collapse of all data onto one curve
is a remarkable result of the HHD model.
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Figure 5. Maximum scour depth hm versus the logarithm of time. , U0 = 0.846m s−1,
b0 = 5 cm; , U0 = 0.843m s−1, b0 = 5 cm; , U0 = 1.213m s−1, b0 = 5 cm; �, U0 = 0.620m s−1,
b0 = 5 cm; �, U0 = 0.874m s−1, b0 = 5 cm; |×, U0 = 0.879m s−1, b0 = 8 cm; +, U0 = 1.032m s−1,
b0 = 2.5 cm.
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Figure 6. Non-dimensional maximum scour-hole depth, h∗
m versus the logarithm of

adimensional time, t∗(h∗
m =hm/H , t∗ = t/T ). C6 = 0.01, p = 0.35, τ ∗

crit =0.035, γ = −0.1 and
ϕ = 33◦. For definition of symbols see figure 5.

It can be seen from figure 5 and more evidently from figure 8, that there are at least
two regimes of scouring. The first reaches up to t∗ ≈ 1, during which the scour hole
deepens rapidly and corresponds in the present experiments to about 100 s. During
the second regime, the scour hole deepens intermittently at a very slow rate up to
the asymptotic state. The data of Tests B and C show that after the first regime, the
deepening rate is practically zero for a certain time (plateau in the curves) and then
slowly increases again to reach another plateau and this behaviour continues up to
the asymptotic state. The HHD model applies to the first active sediment transport
regime, after which the scour-hole depth, hs , is more than half the asymptotic depth,
ha , reached after hours or even days.

The sediment is eroded by the bed shear stress, strongly enhanced by the Görtler
vortices and is carried up the upstream-facing slope at x > xm. When the slope angle,
β , is close to the angle of repose, ϕ, the sediment is still carried up the slope by the
Görtler process, but is deposited before reaching the top at x = xc. It first accumulates
there and then moves downslope in the form of intermittent avalanches. This is
referred to as the quasi-steady-state scour depth, called ‘steady state’ by HHD. We
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Figure 7. Maximum quasi-steady-state scour-hole depth normalized by b0, hs/b0 versus
[(b0/d50)

−0.11(Frd )
1.1]. , U0 = 1.213m s−1, b0 = 5 cm; �, U0 = 0.620m s−1, b0 = 5 cm; �, U0 =

0.874m s−1, b0 = 5 cm; |×, U0 = 0.879m s−1, b0 = 8 cm; +, U0 = 1.032m s−1, b0 = 2.5 cm.

call it ‘quasi-steady’ instead of steady, because scouring continues at a very low rate by
weak suspended load transport and by an intermittent rearrangement of the upstream
facing bed slope. The sand wave crest at x = xc is slowly modified by sediment deposit
before the crest and intermittent downslope motions of relatively large portions of
sediment. This can result in a decrease of the slope angle and a slight downstream
displacement of a wave crest, decreasing intermittently the slope angle, thus allowing
for a renewal of scouring.

Of practical interest are the asymptotic scour-hole depth, ha , and scour length, La .
(ha = lim(hm)

t−→ ∞ and idem for La). Various correlations have been proposed for ha

(e.g. Eggenberger & Mueller 1944; Rajaratnam 1981; Ali & Lim 1986). The latter are
of the form ha/b0 ∝ Frd or ha / b0 ∝ (U0/vss)

1/2Fr3/4
d , where vss is the particle settling

velocity and Frd = U0/
√

g(�ρ /ρ) d50. Experiments show (see figure 5 and Kurniawan,
Altinakar & Graf 2004) that ha = c1hs and La = c2Ls , where hs =hm(ts), (the same
for Ls) and ts is the time at which the quasi-steady state is reached. The constants
are approximately c1 ≈ 1.9 and c2 ≈ 1.7. The dependency of ha or hs on U0 in these
correlations is of the form hs or ha ∝ U�

0 with � ≈ 1. The characteristic length scale H

of HHD, equation (9), has an exponent � close to 2. It is possible to adapt the HHD
scaling, (9), to hs in the form:

Hs = b0f1 (Θ) , (13a)

with f1(Θ) = (Θ1/(1−γ ))a such that the characteristic length scale is

Hs = b0

(
Θ1/(1−γ )

)a
. (13b)

The exponent a in (13b) is determined from the experimentally observed dependency
of hs on U0 and b0 for, otherwise, the same conditions. First, we determine the
exponent � in hs ∝ U�

0 , keeping the other variables constant. The best fit is obtained
with � =1.1, but � =1 would also be acceptable. The range of U0 is too narrow to
decide definitely, but arguments given below support � =1.1. When taking � = 1.1,
the corresponding exponent a in (13a) is close to 0.6, giving

(
Θ1/(1−γ )

)0.6
=

[
C6

tan ϕ

τ ∗
crit

]0.6/1.1 (
b0

d50

)−0.11

Fr1.1
d . (14)

In figure 7, hs/b0 is plotted as a function of (b0/d50)
−0.11Fr1.1

d . The best fit is
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Figure 8. Maximum quasi-steady-state scour-hole depth, hs versus time normalized by Ts ,
t∗
s = t/Ts . For definition of symbols see figure 7.

hs/b0 = B1(( b0/d50)
−0.11Fr1.1

d ) − B2 with B1 = 0.43 and B2 = 0.2. The value B1 = 0.43 is
close to [C6tan ϕ/τ ∗

crit]
0.6/1.1 = 0.4. A good correlation is therefore

hs

b0

=

[
10−2 tan ϕ

τ ∗
crit

]0.55 (
b0

d50

)−0.11

Fr1.1
d − 0.2. (15)

The dependency of hs on Frd or U0 in (15) is close to the one proposed by Rajaratnam
(1981) and Ali & Lim (1986) for ha . The present scaling, inspired by the HHD model,
also gives the dependency on the characteristics of the mobile bed material. Because
of the narrow range of the experimental conditions, the exponent must be taken
with some caution. Nevertheless, the weak dependency of hs/b0 on b0/d50 given by
a ∼=0.6 → � ∼=1.1 is essential. Without it, the points for b0 = 2.5 and 8 cm would not
all collapse onto a straight line. Even more remarkable is the correct value of the
pre-factor given by this scaling exponent.

The associated characteristic time scale for reaching quasi-steady-state conditions
is more difficult to define experimentally. Adapting the HHD model (eqution (10))
for ts , a time scale Ts can be defined in the form

Ts =
(1 − p) b2

0

8
(
τ ∗3

crit �ρgd3
50 /ρ tan3 ϕ

)1/2
f2(Θ). (16)

The function f2(Θ) = (Θ2/(1−γ ))b expresses the dependency on U0. A first and obvious
choice is to take b = 0, which means that the time it takes to reach a quasi-steady state
is independent of velocity, but depends strongly on b0 (on b2

0). In figure 8, hs is plotted
as a function of t∗

s = t/Ts for f (Θ) = constant for three different gate openings b0 and
different velocities. In all cases, the quasi-steady state is reached for t∗

s ≈ 5 and it is
seen that the time, ts indeed scales with b2

0. No obvious velocity dependency emerges.
If anything, the exponent b would need to be small, but negative.

With the scales Hs and Ts , the transport equation can still be written in non-
dimensional form provided that

Qs = 8
(
τ ∗ 3
crit �ρgd3

50/ρ tan3 ϕ
)1/2(

Θ1 / 1−γ
)c

(17)

with c = 0.6.
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Figure 9. Maximum scour-hole depth normalized by Hs , hm/Hs versus the logarithm of time
normalized by Ts , t/Ts . For the correspondence of symbols see figure 5.

It is of interest to rescale the time evolution of the scour-hole depth by using the
characteristic length and time scale Hs and Ts instead of H and T . This is done in
figure 9; the collapse is as good as in figure 6. These new scaling laws do not mean
that the HHD model is not correct. However, it could perhaps be reformulated in
terms of the scales Hs, Ts and Qs .

5. Conclusion and further discussion
The observed loose sediment streaks or longitudinal ridges (see figure 1) on

the upstream-facing sediment slope of the scour hole are a signature of intense
longitudinal vortices which lift up the sediment. The origin of these vortices is
attributed to Görtler instability and it is shown that the flow conditions favour such
an instability of the boundary region of the turbulent wall jet. The turbulent Görtler
number (see table 1) is found to be well above the critical value, which implies
that the vortices are intense and unsteady. The measured sediment streak spacing,
representative of the wavelength, is shown to be consistent with the theoretical
wavelength (see figure 4). To our knowledge, this is the first time that this sediment
transport pattern, generated by longitudinal vortices, has been clearly identified and
that their existence is linked to Görtler instability.

The contribution of these vortices to bed shear stress is likely to be of the same form
as normal turbulent shear stress and is, therefore, additive (equation (4)). A numerical
example is presented which shows that the Görtler vortices can increase the effective
shear stress (shear stress effective in sediment transport) by an order of magnitude.
Support for this increase of the shear stress by a constant factor is given by the HHD
model which considers only a turbulent shear stress and contains adjustable constants.
The time evolution of the scour-hole depth predicted by the HHD model is in good
agreement with experiments. Indeed, when expressed in non-dimensional variables, all
the data concerning the depth-time evolution collapse reasonably well onto a single
curve (see figure 6) in the first scour regime, until a quasi-steady state (called steady
state by HHD) is reached at t = ts . This is the regime where the HHD model is valid.

Of practical interest are the asymptotic scour-hole depth, ha and scour length, La .
We consider here that ha = c1hs and La = c2Ls , where hs =hm(ts) and Ls = xb(ts) are
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the quasi-steady-state scour-hole dimensions reached at t = ts . The constants c1 and c2

vary between 1.5 and 2. It is shown that hs scales on hs/b0 = B1((b0/d50)
−0.11Fr1.1

d ) − B2

so that the characteristic length scale is Hs = b0Θ
0.55 (equation (13)). The time ts

required to reach this quasi-steady state is practically independent of the jet velocity,
but depends on b2

0 according the characteristic time scale, Ts , given by equation (14).
For practical applications, the scales Hs , Ts and Qs are more useful scales than H , T

and Q.
The second regime t > ts goes on for an extremely long time (see Tests B and C,

figures 5 and 6) and no upper time limit can be given. Erosion is very slow and occurs
partly by suspended load transport (see particles in suspension in figure 3a) and by
an intermittent rearrangement of the downstream sediment slope. It is conjectured
that without Görtler vortices, suspended load formation would not occur at t > ts
and bed rearrangement would also be absent or considerably reduced. The Görtler
vortices cause strong up-slope sediment transport and, in turn, strong avalanching
which intermittently destabilizes the sediment hill.
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